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In this paper we introduce a ‘‘lattice gas with energy,’’ and obtain the ‘‘fluctua-
tion dissipation equation’’ for it. The system has two conserved quantities, the
number of particles and the total energy. Once the ‘‘fluctuation dissipation
equation’’ is established, the hydrodynamic limit is easily deduced from it by
using the methods found in ref. 1 for this model.
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1. INTRODUCTION

In this paper we introduce a Markov process of a system of many particles
which carry ‘‘energies’’ and move on a large cubic lattice, exchanging their
energies with other particles. We investigate its hydrodynamic scaling limit;
in particular we derive the ‘‘fluctuation dissipation equation’’ for it.
In this Markov process a particle moves to a nearest neighbor site

obeying the exclusion rule at a rate which depends only on the energy
carried by the particle. One unit of energy is transfered from a particle to
another particle located in a nearest neighbor site of the particle with the
generalized exclusion law which is introduced by Kipnis et al. (2) The
dynamics has two conserved quantities, the number of particles and total
energy. This model is of ‘‘non gradient type.’’
The hydrodynamic limit for systems of non gradient type have been

obtained for various models (cf. refs. 1–4; see also refs. 5 and 6 for asym-
metric models where a similar method is used), where it is a crucial step to
derive the ‘‘fluctuation dissipation equation.’’ The equation is essentially



introduced and verified by Varadhan (4) for a ‘‘non-gradient’’ Ginzburg–
Landau model.
In this paper we establish the fluctuation dissipation equation for the

model we introduce. The framework of our proof is similar to that origi-
nally devised in ref. 4 and developed by others. We study a quadratic form
of central limit theorem variance for the time evolution of a finite system
and its limit as the size of the system tends to infinity. This limiting
quadratic form naturally defines a Hilbert space of functions of configura-
tions on the infinite lattice. This Hilbert space contains all functions of the
form Lf, local functions f acted by the formal generator L of the asso-
ciated infinite particle system. Our main task is to identify the orthogonal
complement of the subspace of {Lf} in the Hilbert space with the
2d-dimensional space of the ‘‘gradients’’ of two conserved ‘‘quantities.’’
Adapting the method of ref. 1 we can deduce from the ‘‘fluctuation

dissipation equation’’ that the hydrodynamic limit holds true for the model
in the sense that the sequence of empirical density fields for our process is
tight and any of its limit density field is a weak solution of a system of dif-
fusion equations of two components. Since the jump of particles and the
transfer of energy is allowed only between neighboring sites, the model is
mirror symmetric with respect to each coordinate axis. From this it will be
inferred that the system of diffusion equations is in a diagonal form with
respect to the coordinates of the space variable, namely all the diffusion
coefficients of the partial derivatives that involve two coordinates of a
spatial point vanish.
This paper is organized as follows: In Section 2 we introduce our

model and state the main results. In Section 3 we give a spectral gap esti-
mate and related ones. In Section 4 we characterize the class of closed
forms. In Section 5 we compute some variances. Finally in Section 6 we
prove the main results.

2. MODEL AND RESULTS

Let LN be a d-dimensional cube in Zd with width 2N+1, centered at
origin. Let g=(gx)x ¥ LN denote a configuration of the lattice gas with
energy where for each x, gx ¥ {0, 1, 2,..., k}. Let us define tx :=1{gx ] 0}. We
regard that if tx=0, then the site x is vacant, and if tx=1, then there
exists a particle at site x; furthermore if there exists a particle at site x, then
this particle has the energy gx.
For a point x ¥ Zd we use the norm

|x| :=C
d

i=1
|xi |,
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and for a directed bond b=(x, y), x, y ¥ Zd we define

|b| :=|x−y|.

We consider the two types of jump: firstly a particle jumps to one of its
neighboring vacant sites and secondly one unit of the energy on an occupied
site is transfered to one of its neighboring occupied sites if any according to
a generalized exclusion law.
Let g (x, y) and gxQ y be the configurations defined by

(g (x, y))z=˛
gy, if z=x,

gx, if z=y,

gz, otherwise,

(gxQ y)z=˛
gx−1, if z=x,

gy+1, if z=y,

gz, otherwise.

Let p (x, y) and pxQ y be the operators defined by

p (x, y)f(g) :=f(g (x, y))−f(g),

pxQ yf(g) :=f(gxQ y)−f(g),

for any local function f. Let cex(r), cge(r) be functions of r=0, 1, 2,..., k such
that cex(0)=0 and cex(l) > 0 for all 1 [ l [ k, and cge(0)=cge(1)=0 and
cge(l) > 0 for all 2 [ l [ k.
For a directed bond b=(x, y), let Lb and Lb be the operators defined

by

Lbf(g) :=cex(gx)(1−ty) p (x, y)f(g)+cge(gx) 1{1 [ gy [ k−1}p
xQ yf(g),

Lbf(g) :=tx(1−ty) p (x, y)f(g)+1{gx \ 2}1{1 [ gy [ k−1}p
xQ yf(g),

for any local function f. For any directed bond b=(x, y), let cb(g) be a
function defined by

cb(g) :=cex(gx)(1−ty)+cge(gx) 1{1 [ gy [ k−1}.

Then

Lbf(g)=cb(g)Lbf(g)
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for all local functions f. Let LN be the Markov operator defined by

LN := C
b ¥ LN, |b|=1

Lb.

Since for each local function f there exists n0 such that for any n > n0

Lnf=Ln0 f,

we simply write Lf for Lnf if n is large enough.
We regard the process as a gas of particles with energy. A particle

at site x moves to neighboring site y at rate cex(gx), which depends only on
the value of the energy of the particle, if y is vacant. Between two
neighboring particles the energies are exchanged by the same stochastic
rule as the (k−1)-generalized exclusion process, which is introduced by
Kipnis et al. (2)

Consider the family of product measures on the product space
{0, 1, 2,..., k}LN with the marginal distribution

P̄p, r({g : gx=l}) :=˛
1−p if l=0,

p
1

Za(p, r)
if l=1,

p
1

Za(p, r)

(a(p, r)) l−1

cge(2) cge(3) · · · cge(l)
if 2 [ l [ k

for all x ¥ LN, 0 [ p [ 1 and p [ r [ kp, where Za(p, r) is the normalization
constant and a(p, r) is a positive constant depending on p and r and
uniquely determined by the relation

Ēp, r[gx]=r.

From the definition, we have reversibility, or what is the same thing, our
model satisfies detailed balance condition, namely

cge(gx) 1{1 [ gw [ k−1}P̄p, r({g})

=cge((gxQ w)w) 1{1 [ (gxQ w)x [ k−1}P̄p, r({g
xQ w}), (1)

P̄p, r({g})=P̄p, r({g (x, w)})

for any p, r, x, w ¥ LN, x ] w and g ¥ {0, 1, 2,..., k}LN, which means that
LLn is symmetric with respect to P̄p, r.
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For any directed bond b=(x, y) and for any local function f, g let us
define Db(f; p, r), Db(f, g; p, r) by

Db(f; p, r) :=Db(f, f; p, r),

Db(f, g; p, r) :=−Ēp, r[f(Lb+LbŒ) g],

where bŒ=(y, x). Using the reversibility (1) we have

Db(f, g; p, r)=Ēp, r[cb(Lbf)(Lb g)] (2)

for all local functions f, g, and for all directed bonds b=(x, y).
We write A …… Zd if A … Zd and |A| <.. Let us consider canonical

measures PL, y, E defined by

PL, y, E( · ) :=P̄p, r 1 · : C
x ¥ L
tx=y, C

x ¥ L
gx=E2

for L …… Zd, 0 [ y [ |L| and y [ E [ ky. Then reversibility similar to (1)
hold for the canonical measures. For L … Zd define

FL=s-algebra generated by {gx: x ¥ L}.

We also define

D̃b(f; L, y, E) :=D̃b(f, f; L, y, E),

D̃b(f, g; L, y, E) :=−EL, y, E[f(Lb+LbŒ) g]

for all L …… Zd, 0 [ y [ |L|, y [ E [ ky, b=(x, y) ¥ L and FL measurable
functions f, g, where bŒ=(y, x). We have the formulas for D̃ similar to
(2).
Following ref. 1, we introduce the ‘‘fluctuation dissipation equation’’

for this model. Let us define

G :={h: h is a local function and satisfies ELn, y, E[h]=0

for some n and for all y, E}.

Let yx be the shift operator which acts on all A … Zd and all local functions
h as well as configurations g as follows:

yxA :=x+A,

yxh(g) :=h(yxg),

(yxg)z :=gz−x.
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Let us introduce the spatial averaging operator defined by

Av
x ¥ L
:=
1
|L|

C
x ¥ L

for L …… Zd. For any h, g ¥ G we can define, for all sufficiently large l,

V (l)(h; y, E) :=V (l)(h, h; y, E)

V (l)(h, g; y, E) :=ELl , y, E[ Av
x ¥ Ll1

yxh(−L (l))−1 Av
x ¥ Ll1

yx g],

where l1=l−`l, L (l)=Avb ¥ Ll, |b|=1 Lb.

Lemma 2.1. For any g ¥ G there exists a limit

lim
lQ., ( y

|Ll|
, E
|Ll|
)Q (p, r)

[V(l)(g; y, E)].

We will prove Lemma 2.1 in Section 5. Let us define V(g; p, r) by

V(g; p, r) := lim
lQ., ( y

|Ll|
, E
|Ll|
)Q (p, r)

[V(l)(g; y, E)].

Let us define the current tw=( twE, twP) by

wEe :=−(L(0, e)+L(e, 0)) g0,

wPe :=−(L(0, e)+L(e, 0)) t0.

We also define the density gradients t(NgF)=( tNg, tNt) by

(Ng)e :=ge−g0,

(Nt)e :=te−t0.

For a, b ¥ Rk, denote by (a · b) the standard inner product on Rk. Let h be a
local function. For any directed bond b we can define ;x ¥ Zd Lbyxh, for
which we write Lb ;x ¥ Zd yxh although the infinite sum ;x ¥ Zd yxh does not
make sense. Similarly we write

Db 1 C
x ¥ Zd

yxh; p, r2=Ēp, r 5cb 1Lb C
x ¥ Zd

yxh2
26

and so on. With these notations our main theorem in this paper is stated as
follows:
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Theorem 2.2 (Fluctuation Dissipation Equation). Fix densities
p and r. Then for any 2d dimensional unit vector a,

inf
g
V((a · (w+D NgF+Lg)); p, r)=0,

where the infimum is taken over g= t(g1,..., g2d) such that all components
are local functions, Lg= t(Lg1,..., Lg2d) and D=D(p, r) is a 2d×2d
matrix defined as follows.
Let D̃(p, r)=(D̃i, j(p, r))i, j ¥ {E, P} be a 2×2 matrix defined by the

variational formula: for any 2-dimensional vector a,

(a · D̃(p, r) a)= C
i, j ¥ {E, P}

aiD̃i, j(p, r) aj

:=inf
u

D(0, e) 1 (a · t(g0, t0))+ C
x ¥ Zd

yxu; p, r2

where infu is taken over all local functions. (Here E, P are two indices,
suggesting energy and particle, respectively.) Put

q(p, r) :=R Ēp, r[g
2
0]−r

2 (1−p) r
(1−p) r p(1−p)

S ,

D1(p, r)=D̃(p, r) q−1(p, r).

(q−1(p, r) denotes the inverse matrix of q(p, r).) Then for the case d=1,

D :=D1(p, r)

and for the case d \ 2, the ((i, e), (j, eŒ)) component of D(p, r) is given by

(D(p, r))i, e, j, eŒ :=˛
0 if e ] eŒ
(D1(p, r))i, j if e=eŒ

for all i, j ¥ {E, P}.

Remark. Let p be a finite range, translation invariant, irreducible,
symmetric transition probability on Zd. Then we generalize our generator
to

LN := C
x, y ¥ LN

p(x−y) L(x, y),
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and accordingly extend Theorem 2.2, but in general it seems that

(D(p, r))i, e, j, eŒ ] 0

for i, j ¥ {E, P} if e ] eŒ. But if p is mirror symmetric with respect to each
axis, then if e ] eŒ

(D(p, r))i, e, j, eŒ=0

for i, j ¥ {E, P}. In our model p is mirror symmetric since it is given by the
transition probability of the simple random walk on Zd.

Remark. Adapting the method of ref. 1 we can deduce from
Theorem 2.2 the hydrodynamic limit for the present model in the sense that
the sequence of empirical density fields for our process is tight and any of
its limit density field is a weak solution of the following system of diffusion
equations

“

“t
rE(t, h)=C

d

i=1

“

“hi
1DE, ei, E, ei (r)

“

“hi
rE(t, h)+DE, ei, P, ei (r)

“

“hi
rP(t, h)2

“

“t
rP(t, h)=C

d

i=1

“

“hi
1DP, ei, E, ei (r)

“

“hi
rE(t, h)+DP, ei, P, ei (r)

“

“hi
rP(t, h)2

under the periodic boundary condition in the space variable h ¥ [0, 1]d

where D is the diffusion coefficient matrix given in Theorem 2.2 and rE

and rP are densities corresponding to g and t respectively. The problem for
the uniqueness of the weak solution to the Cauchy problem for such a
system of diffusion equations seems unsolved in the existing literatures. In
ref. 7, however, the present author proves that if d \ 3 then D(r) is smooth
in r, from which the uniqueness would be obtained. Hence for d \ 3 the
hydrodynamic limit is established in the usual sense.

3. A SPECTRAL GAP ESTIMATE AND RELATED RESULTS

Main results of this section are Lemmas 3.1 and 3.3 later. Adapting
the methods of refs. 8 or 9, we get a spectral gap estimate under the measure
conditioned on the particle number and the total energy.
From here to the end of the paper we fix the parameter of the product

measure p, r, and omit them from the notations P̄, Ē, V, D unless stated
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otherwise. In this section all the estimates are understood to hold uniformly
in parameters of product measures. Let us define S (x, y) and SxQ y by

S (x, y)g :=g (x, y),

SxQ yg :=gxQ y.

Let c(x, y) denote the canonical path from x to y, namely, c(x, y) is the
nearest neighbor path that goes from x to y, moving successively as far as
it has to do in each of the coordinate directions, following the natural order
for the different coordinate directions. It is formally defined by

c(x, y) :={z(i): 0 [ i [ |x−y|}, (3)

where z(i)=(z(i)1,..., z(i)d) are given as follows:

z(i)j=xj for i [ C
j−1

k=1
|xk−yk |,

z(i)j=yj for i \ C
j

k=1
|xk−yk |,

z(i)j=xj+1 i− C
j−1

k=1
|xk−yk |2

yj−xj
|yj−xj |

for C
j−1

k=1
|xk−yk | < i < C

j

k=1
|xk−yk |.

Let us define DxQ y(f) and D (x, y)(f) by

DxQ y(f) :=Ē[cge(gx) 1{1 [ gy [ k−1}((p
xQ yf)(g))2]

D (x, y)(f) :=Ē[cex(gx)(1−ty)((p (x, y)f)(g))2],

for a local function f.

Lemma 3.1. There exists a constant C such that for any local
function f, we have

DxQ y(f) [ C |x−y| C
b ¥ c(x, y), |b|=1

Db(f), (4)

D (x, y)(f) [ C |x−y| C
b ¥ c(x, y), |b|=1

Db(f), (5)

where c(x, y) is the canonical path from x to y.
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In the proof of Lemma 3.1, the next lemma plays an important role.

Lemma 3.2. There exists a constant C such that for any local
function f, we have

Ē[(p (0, e)f)2] [ CD(0, e)(f).

The Dirichlet forms DxQ y, Db etc are defined by means of grand
canonical measures. Note that the same statements as Lemmas 3.1 and 3.2
hold for the corresponding Dirichlet forms for the canonical measures.

Proof of Lemma 3.2. Lemma 3.2 is essentially proved in ref. 8. We
have and only have to show that

Ē[1{0 < g0 < ge}((p
(0, e)f)(g))2] [ C1k2D(0, e)(f). (6)

Fix 1 [ a < b [ k, consider the configuration g with g0=a and ge=b. For
0 [ l [ b−a, let g l be the configuration defined by

g0 :=g,

g l :=SeQ 0g l−1, for 1 [ l [ b−a.

Using the Schwarz inequality and reversibility (1) we have

Ē[1{g0=a, ge=b}(p
(0, e)f)2] [ (b−a) C

b−a

l=1
C

g: g0=a, ge=b
P̄({g l−1})

×
cge(a+1) · · · cge(a+l−1)
cge(b) · · · cge(b−l)

(f(g l)−f(g l−1))2.

Since cge > 0 for b \ 2, and the number of cge in the last line is at most 2k,
there exists a constant C such that

Ē[1{g0=a, ge=b}(p
(0, e)f)2]

[ C(b−a) C
b−a

l=1
C

g: g0=a, ge=b
cge((g l−1)e) P̄({g l−1})(f(g l)−f(g l−1))2.

Summing up over 1 [ a < b [ k, we have (6) as required. L

Proof of Lemma 3.1. Let z(i) :=zx, y(i) (0 [ i [ |x−y|) be defined
by (3), namely z(i) is the i th point from x on the canonical path c(x, y).
In order to estimate (4) we take a large jump corresponding to Dirichlet
form to nearest neighbor jumps which are allowed in our model or

228 Nagahata



used in Lemma 3.2. We can express a large jump from x to y as a compo-
sition of at most 2|x−y|−1 nearest neighbor jumps. We write the configu-
ration corresponding to the ith nearest neighbor jumps by Sig for
0 [ i [ 2 |x−y|−1. Formally we define Sig by S0g :=g,

Sig=S(z(i−1), z(i))Si−1g

for 1 [ i [ |x−y|−1, and

S|x−y|g=Sz(|x−y|−1)Q z(|x−y|)S|x−y|−1g

and

Sig=S(z(2 |x−y|− i−1), z(2 |x−y|− i))Si−1g

for |x−y|+1 [ i [ 2 |x−y|−1. Then we have S2 |x−y|−1=gxQ y. Hence we
have

pxQ yf(g)= C
2 |x−y|−1

i=1
(f(Sig)−f(Si−1g)),

and

f(Sig)−f(Si−1g)=p (z(i−1), z(i))f(Si−1g)

for 1 [ i [ |x−y|−1, and

f(S|x−y|g)−f(S|x−y|−1g)=p |x−y|−1Q |x−y|f(S|x−y|−1g),

and

f(Sig)−f(Si−1g)=p (z(2 |x−y|− i−1), z(2 |x−y|− i))f(Si−1g),

for |x−y|+1 [ i [ 2 |x−y|−1. Using the Schwarz inequality and Lemma 3.2,
we have

DxQ y(f) [ (2 |x−y|−1) Ē[cge(gx) C
2 |x−y|−1

i=1
(f(Sig)−f(Si−1g))2]

[ C |x−y| C
b ¥ c(x, y), |b|=1

Db(f).

We can obtain (5) in the same way. L
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Lemma 3.3. Suppose L, LŒ …… Zd, L 5 LŒ=”, L ]” and x ¨ L
2 LŒ. Then there exist constants C1, C2 such that for each FL 2 LŒ 2 {x}-
measurable function f, and for all z ¥ L.

Ē[(L(x, z)Ē[f |FLŒ 2 {x}])2 |FLŒ]

[
C1
|L|
Ē[(f−Ē[f |FLŒ])2 |FLŒ]+C2 Av

y ¥ L
Ē[(L(y, x)f)2 |FLŒ]. (7)

Applying Lemma 3.1 we have the following corollary of Lemma 3.3.

Corollary 3.4. Suppose that z ¥ Ln and z+e ¨ Ln. There exist con-
stants C1, C2 such that for eachFL3n -measurable function f,

Ē[(L(z, z+e)Ē[f |FLn])
2]

[
C1
|Ln |
Ē[(f−Ē[f])2]+C2n Av

y ¥ Ln, z, e
C

b ¥ c(y, z)
Ē[(Lbf)2], (8)

where c(y, z) denotes the canonical path from y to z defined by (3), and
Ln, z, e=yz+neLn.

Adapting the methods of refs. 8 or 9, we can easily deduce the following
spectral gap estimate from Lemmas 3.1 and 3.3.

Corollary 3.5 (Spectral Gap Estimate). There exists a constant C
such that for any positive integer n, y, E satisfying y [ |Ln |, y [ E [ ky

ELn, y, E[(f−ELn, y, E[f])
2] [ Cn2 C

b ¥ Ln : |b|=1
D̃b(f; Ln, y, E).

Proof of Lemma 3.3. We adapt the method of ref. 9. We only prove
the case LŒ=”, since the proof of the case LŒ ]” is similar to that of
the case LŒ=”. Without risk of confusion, we simply write Ē[ · | r] for
Ē[ · | {gx=r}], P̄(g) for P̄({g}), P̄(gx=r) for P̄({g: gx=r}) and so on. By
the definition

L(x, z)Ē[f | r]=1{r \ 1}(1−tz){Ē[f | 0]−Ē[f | r]}

+1{r \ 2}1{1 [ gz [ k−1}{Ē[f | r−1]−Ē[f | r]}. (9)

Denote a covariance of f, g with respect to Ē by

Ē[f; g] :=Ē[fg]−Ē[f] Ē[g].
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Let us define f (x, y) and fyQ x by

f (x, y)(g) :=tx(1−ty) f(g (x, y)),

fyQ x(g) :=1{2 [ gy [ k}1{1 [ gx [ k−1}f(g
yQ x),

for y ¥ L. For 1 [ r [ k we defineMex, r
L (g) by

Mex, r
L (g) :=

1
Ē[1{gy=r}]

Av
y ¥ L
1{gy=r}.

Note that Ē[Mex, r
L | 0]=1. We have

Ē[f | r]−Ē[f | 0]=Av
y ¥ L

1
P̄[tz=0 | r]

Ē[(1−ty)(f−f(x, y)) | r]

+Ē[f; Mex, r
L | 0]−

1
Ē[(1−tz) | r]

Ē[f; Av
y ¥ L
(1−ty) | r],

(10)

for 1 [ r [ k.
Similarly let us defineMge, r

L (g) by

Mge, r
L (g) :=

P̄[gy=r]
cge(r+1) P̄[gy=r+1]

Av
y ¥ L
c(gy).

From reversibility (1), we have

Ē[Mge, r
L | r]=Ē[1{1 [ gy [ k−1} | r],

for 1 [ r [ k−1. We have

Ē[f | r+1]−Ē[f | r]=Av
y ¥ L

1
Ē[cge]

Ē[cge(gy)(fyQ x−f) | r]

−
1

Ē[1{1 [ gz [ k−1} | r+1]
Ē[f; Av

y ¥ L
1{1 [ gy [ k−1} | r+1]

+Ē[f; Mge, r
L | r]. (11)

for 1 [ r [ k−1.
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Using (9)–(11) and the Schwarz inequality we get

Ē[(L(x, z)Ē[f |F{x}])2]

[ CP̄(tz=0) C
k

r=1
P̄(zx=r)

×31Av
y ¥ L

1
P̄[tz=0 | r]

Ē[(1−ty)(f−f (x, y)) | r]2
2

+(Ē[f; Mex, r
L | 0])

2

+1 1
Ē[(1−tz+e) | r]

Ē[f; Av
y ¥ L
(1−ty) | r]2

24

+CP̄(1 [ gz [ k−1) C
k−1

r=1
P̄(zz=r+1)

×31Av
y ¥ L

1
Ē[cge]

Ē[cge(gy)(fyQ x−f) | r]2
2

+1 1
Ē[1{1 [ gz [ k−1} | r+1]

Ē[f; Av
y ¥ L
1{1 [ gy [ k−1} | r+1]2

2

+(Ē[f; Mge, r
L | r])

24 .

We calculate to see

Ē[(Mex, r
L −Ē[M

ex, r
L | 0])

2 | 0]=
1
|L|
1− P̄(gx=r)
P̄(gx=r)

for all 1 [ r [ k, and

Ē[(Mge, r
L −Ē[M

ge, r
L | r])

2 | r]=
1
|L|
Ē[(cge−Ē[cge])2]

Ē[cge]
P̄(1 [ gx [ k−1).

for all r. Using these results and the inequality

Ē[f; g] [ (Ē[f; f] Ē[g; g])1/2

valid for all local functions f, g, we conclude that

Ē[(L(x, z)Ē[f |F{x}])2] [
C1
|L|
Ē[(f−Ē[f])2]+C2 Av

y ¥ L
Ē[(L(y, x)f)2]. L
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4. STRUCTURE OF THE SPACE OF CLOSED FORMS

In this section firstly we introduce and characterize the space of
translation covariant closed forms for our model, and secondly we show
that any limit point of functions of the form L(0, e)Avx ¥ Lk[yxu] with certain
moment conditions is essentially in this space.
For any directed bond b=(x, y), we define Tb by

Tbg=˛
gxQ y if gx \ 2 and 1 [ gy [ k−1,
g (x, y) if tx=1 and ty=0,
g otherwise,

so that

Lbf(g)=f(Tbg)−f(g).

A set of functions {Fb}b is said to be closed or a closed form if the follow-
ing condition holds: for each finite sequence of directed bonds b1, b2,..., bn
and each configuration g, such that gn=g, if we define g i, 0 [ i [ n, by
g0=g and g i=Tbig

i−1, then

C
n

i=1
Fbi (g

i−1)=0.

We consider the special cases. If a pair of a directed bond b and a configu-
ration g satisfies Tbg=g, then from the defining relation in the case n=1
we have

Fb(g)=0, (12)

for all closed forms {Fb}b. If a pair of a directed bond b=(x, y) and a
configuration g satisfies Tbg ] g, then T(y, x)T(x, y)g=g. Hence in the case
n=2 we have

F(x, y)(g)=−F(y, x)(Tbg) (13)

for all closed forms {Fb}b, if T(x, y)g ] g.
A closed form is said to be translation covariant if it holds that

Fb=yxFyxb for all sites x and all bonds b. From (12) and (13), we can
represent the translation covariant closed form by {F(0, e)}e, where e varies
over positive unit vectors on the lattice. We consider the set of the
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representatives of translation covariant and square integrable closed formsGc,
which is formally defined as follows. Given {F(0, e)}e let us define {F(0, −e)}e
by

F(0, −e)(g) :=˛
0, if T(0, −e)g=g,
− y−eF(0, e)(T(e, 0)g), otherwise

(14)

and for all |x−y|=1, let us define {F(x, y)}(x, y) by

F(x, y) :=yxF(0, y−x). (15)

Using these notations we define Gc by

Gc :={{F(0, e)}e : {Fb}b defined by (14) and (15) is closed

and Ē[F2(0, e)] <.}. (16)

Given a finite box Ln, we decompose {0, 1,..., k}Ln into ergodic classes.
Two configurations g, w ¥ {0, 1,..., k}Ln are in the same class if and only if
there exist a positive integer l and a sequence of bonds {b1, b2,..., bl} where
bi ¥ Ln for all 1 [ i [ l such that

g=Tbl p Tbl−1 p · · · p Tb1w.

Each ergodic class is determined by the conserved quantities ;x ¥ Ln tx,
;x ¥ Ln gx. We pick up arbitrarily a pair of integers y, E satisfying
0 [ y [ |Ln |, y [ E [ ky. For each pair of integers y, E, we write Eny, E for
the ergodic class determined by ;x ¥ Ln tx=y, and ;x ¥ Ln gx=E. Further-
more for each Eny, E we pick up an element of it and denote it by g

n
y, E. If

g ¥ Eny, E, then we can find a sequence of bonds {b1, b2,..., bl} such that

g=Tbl p Tbl−1 p · · · p Tb1g
n
y, E.

Given a closed form {Fb}b ¥ Ln , we put

G̃n(g) :=− C
l

i=1
Fbi (Tbi p Tbi−1 p · · · p Tb1g

n
y, E),

for g ¥ Eny, E. In view of the definition of the closed form, it is not difficult
to see that G̃n does not depend on the choice of the sequence of bonds.
Therefore G̃n is well-defined for g ¥ Eny, E and for any c ¥ R, it holds that

Lb(G̃n(g)+c)=Fb(g),
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for all g ¥ Eny, E and b ¥ Ln. Put

Gn(g) :=G̃n(g)−ELn, y, E[G̃
n]

for g ¥ Eny, E. Carrying out such constructions for all y, E, we get the
FLn -measurable function satisfying

LbGn(g)=Fb

ELn, y, E[G
n]=0

for b ¥ Ln and for all y, E. Gn is an normalized ‘‘integral’’ of the closed
form {Fb}.

Lemma 4.1. We have Gc … G0+GE where G0, GE are defined by

G0 :=the linear subspace of functions spanned by {L(0, e)g0,L(0, e)t0}e,

GE :=33L(0, e) C
y
yy g4

e
: g is a local function4,

and G0+GE is the closure of G0+GE in the Hilbert space L2(P̄).

Proof. We adapt the strategy found in ref. 8. Since Lb and the con-
ditional expectation Ē[ · |FLn] commute if b … Ln, {Ē[Fb |FL3n]}b ¥ L3n is
closed on L3n. We can ‘‘integrate’’ and construct an FL3n measurable
function G3n such that

LbG3n(g)=Ē[Fb |FL3n],

EL3n, y, E[G
3n]=0,

for all y, E. We define hn and Ynb by

hn :=Ē[G3n |FLn],

Ynb :=
1

(2n+1)d
Lb C

x ¥ Zd
yxhn.

Since {Ynb}b are translation covariant, we only consider {Y
n
(0, e)}e where

e varies over all positive unit vectors on the lattice. Throughout the rest
of this section we fix a positive unit vector e. Without risk of confusion
we simply write Yn for Yn(0, e). Noticing that h

n is FLn measurable, we
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decompose Yn as the sum of the interior part Wn1 and the boundary part
Wn2, where W

n
1 and W

n
2 are defined by

Wn1 :=
1

(2n+1)d
L(0, e) C

y: y, y+e ¥ Ln

yyhn,

Wn2 :=
1

(2n+1)d
L(0, e) C

y: y ¥ Ln, y+e ¨ Ln

yyhn+
1

(2n+1)d
L(0, e) C

y: y ¨ Ln, y+e ¥ Ln

yyhn.

It holds that

Ē[|F(0, e)−W
n
1 |
2]Q 0

as nQ.. Indeed, since Lb and conditional expectation Ē[ · |FLn]
commute for b ¥ Ln, we have

Wn1=
1

(2n+1)d
C

y: y, y+e ¥ Ln

Ē[F(0, e) |FyyLn],

and since we have

lim
nQ.
Ē[|F(0, e)−Ē[F(0, e) |FyyLn]|

2]=0

for all y satisfying y, y+e ¥ Ln.
To deal with Wn2 we show that the boundary term is bounded in L

2(P̄).
We decompose Wn2 into two parts B

+
n , B

−
n defined by

B+n :=
1

(2n+1)d
L(0, e) C

y: y ¥ Ln, y+e ¨ Ln

yyhn

B−n :=
1

(2n+1)d
L(0, e) C

y: y ¨ Ln, y+e ¥ Ln

yyhn.

Lemma 4.2. It holds that

sup
n
Ē[|B ±n |

2] <.. (17)

Proof. Using Corollary 3.4, we have only to estimate those quanti-
ties which correspond to two terms appearing on the right hand side of (8).
By the definition of G3n, Ē[G3n]=0 and EL3n, y, E[G

3n]=0 for all y, E.
Therefore

Ē[(G3n−Ē[G3n])2]=Ē[EL3n, y, E[(G
3n−EL3n, y, E[G

3n])2]].
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According to Corollary 3.5 the right hand side of the last equality is less
than or equal to

C(3n)2 C
b ¥ L3n

Ē[Fb] [ CŒnd+2.

we also have Ē[(LbG3n)2] [ CĒ[F
2
b] [ CŒ. Hence an application of (8)

shows (17). L

Since the boundary terms B ±n are bounded in L
2(P̄), we can take a

weak limit of each. We write B ± for each of them respectively.

Lemma 4.3. The limit points B ± depend only on g0 and ge.

Proof. We show that B− depends only on g0 and ge. By the con-
struction, B−n is measurable with respect to the s-algebra generated by
{ge, gx : x ¥ Zd, (e · x) [ 0}. The weak limit B− inherits this property.
We claim that if the bond b=(z, y) satisfies

|z−y|=1, (e · z) [ 0, (e · y) [ 0 and z, y ] 0, (18)

then L(z, y)B−=0. This implies that B− is an exchangeable function of
{gx, x ] 0, (e · x) [ 0}. Using the Hewitt–Savage 0-1 law, we conclude the
proof of the lemma. To see the claim above let us consider a part of
boundary of Ln

Cn=Ce, −, n :={x ¥ Ln : (e · x)=−n}.

Then for each bond b=(z, y) satisfying the condition (18), there exists
n0=n0(z) such that for any n \ n0 we have

#{x ¥ Cn : z ¥ yxLn, y ¨ yxLn or z ¨ yxLn, y ¥ yxLn}

[ ˛0 d=1,
2 d=2,
2(2n+1)d−2 d \ 3.

(19)

By simple computation we have

Lbyxhn=LbyxĒ[G3n |Fn]=˛
yxĒ[Ly−xbG

3n|Fn] if both z, y ¥ yxLn
0 if both z, y ¨ yxLn.

(20)
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On using (19) and (20), Lemma 3.3, and the Schwarz inequality, there
exists a constant C such that

Ē[(LbB
−
n )
2] [

C
n2
.

Hence we conclude thatL(z, y)B−=0 as required. L

We derive certain equations for B−, which specify the function form
of B−. We can rewrite B−n=L(0, e)Hn where Hn :=;x ¥ Cn yxh

n. By the defi-
nition of Cn and hn, Hn does not depend on ge. By this fact some terms
vanish on special configurations;

L(2e, e)B
−
n (g)=L(2e, e)(L(0, e)Hn)(g)

=−{1{g0=1}1{ge=0}1{1 [ g2e [ k−1}+1{g0 \ 2}1{ge=0}1{g2e=k}

+1{g0 \ 2}1{ge=k−1}1{g2e \ 2}} B
−
n (g)

+1{g0 \ 2}1{ge=0}1{1 [ g2e [ k−1}L(2e, e)B
−
n (g).

Since B− is a weak limit of B−n , this equality holds for B
−.

Similarly we have

L(0, −e)B
−
n (g)=L(0, −e)(L(0, e)Hn)(g)

=−{1{g−e=0}1{g0 > 0}1{ge=0}+1{g−e=0}1{g0 \ 2}1{1 [ ge [ k−1}

+1{1 [ g−e [ k−1}1{g0=2}1{1 [ ge [ k−1}} B
−(g)

+{1{1 [ g−e [ k−1}1{g0 \ 2}1{ge=0}+1{1 [ g−e [ k−1}1{g0 \ 3}1{1 [ ge [ k−1}}

×{L(0, −e)(Hn(T(0, e)g)−Hn(g))}.

From the definition ofHn we have

L(0, −e)Hn(g)=
1

(2n+1)d
C
x ¥Cn

Ē[F(0, −e) |FyxLn].

Since {Fb}b is shift covariant and bounded in L2(P̄),L(0, −e)Hn(g) vanishes as
nQ..
If g satisfies

(T(0, e)T(0, −e)g)0+(T(0, e)T(0, −e)g)−e=(T(0, e)g)0+(T(0, e)g)−e (21)
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then we can apply the method which is applied to L(0, −e)Hn(g) also to
L(0, −e)Hn(T(0, e)g). On the set {g : 1 [ g−e [ k−1, g0 \ 3, 1 [ ge [ k−1}, we
certainly have (21). Hence 1{1 [ g−e [ k−1}1{g0 \ 3}1{1 [ ge [ k−1} L(0, −e)Hn(T(0, e)g)
vanishes as nQ.. But on the set {g : 1 [ g−e [ k−1, g0 \ 3, ge=0}, (21)
fails to hold. But on this set we have

L(0, −e)Hn(T(0, e)g)={Hn(T(0, e)T(0, −e)g)−Hn(T(−e, 0)T(0, e)T(0, −e)g)}

+{Hn(T(−e, 0)T(0, e)g)−Hn(T(0, e)g)}

−{Hn(T(−e, 0)T(0, e)g)−Hn(T(−e, 0)T(0, e)T(0, −e)g)}, (22)

and

T(−e, 0)T(0, e)g=T(0, e)T(−e, 0)T(0, e)T(0, −e)g,

(T(0, e)T(0, −e)g)0+(T(0, e)T(0, −e)g)−e=(T(−e, 0)T(0, e)T(0, −e)g)0+(T(−e, 0)T(0, e)T(0, −e)g)−e,

(T(−e, 0)T(0, e)g)0+(T(−e, 0)T(0, e)g)−e=(T(0, e)g)0+(T(0, e)g)−e.

In the same way as dealing with L(0, −e)Hn(g) we therefore see that the first
and second terms on the right hand side of (22) vanish in the limit. On this
set the third term of (22) is equal to

−B−n (T(−e, 0)T(0, e)T(0, −e)g).

We conclude that B− satisfies the following equations:

L(2e, e)B−(g)=−{1{g0=1}1{ge=0}1{1 [ g2e [ k−1}+1{g0 \ 2}1{ge=0}1{g2e=k}

+1{g0 \ 2}1{ge=k−1}1{g2e \ 2}} B
−(g)

+1{g0 \ 2}1{ge=0}1{1 [ g2e [ k−1}L(2e, e)B
−(g), (23)

L(0, −e)B−(g)=−{1{g−e=0}1{g0 > 0}1{ge=0}+1{g−e=0}1{g0 \ 2}1{1 [ ge [ k−1}

+1{1 [ g−e [ k−1}1{g0=2}1{1 [ ge [ k−1}} B
−(g)

−1{1 [ g−e [ k−1}1{g0 \ 2}1{ge=0}B
−(T(−e, 0)T(0, e)T(0, −e)g). (24)

From Lemma 4.3 B−(g) depends only on g0 and ge, we write
B−(g)=f(g0, ge) and solve f where f is a function from {0, 1, 2,..., k}×
{0, 1, 2,..., k} into R. Substituting special configurations (for example
g0=1, ge=0, g2e=1) in (23) and (24), we get
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f(1, l)=0, for l \ 2,

f(l, k)=0, for l \ 2,

f(0, l)=f(0, 0), for l \ 1,

f(l, m)=f(l, m+1), for l \ 2, 1 [ m [ k−1,

f(0, l)=0, for 0 [ l [ k−1,

f(1, l)=0, for 1 [ l [ k−1,

f(l−1, 0)−f(l, 0)=−f(m+1, l−1), for l \ 2, 1 [ m [ k−1,

f(l−1, m)=f(l, m), for l \ 2, 1 [ m [ k−1.

The solutions of these equations are

f(l, m)=˛a if l \ 2, 1 [ m [ k−1
al+b if l \ 1, m=0
0 otherwise

where a, b ¥ R are parameters. We can easily check that L(0, e)g0 and
L(0, e)t0 constitute a basis of these solutions.
We have shown that F(0, e) is approximated by Y

n
(0, e)−W

n
2 and all limit

points of Wn2 are elements of G0. This concludes that Gc … G0+GE. L

The next lemma will be used to prove Lemma 5.2 in Section 5.

Lemma 4.4. Suppose that a sequence of functions {uk}k satisfies the
following: For each k, uk is FLk measurable and there exists a constant C
such that

Av
b ¥ Lk
Ē[(Lbuk)2] [ C

uniformly in k. Let us define a set of functions {fkb}b by

fk(x, x+e) :=yxf
k
(0, e)

fk(0, e) :=L(0, e) Av
y ¥ Lk
[yyuk],

for all x and e with |e|=1. Then each limit point of {fkb}b is a translation
covariant closed form.

Proof. By the definition, {fkb}b is translation covariant. Hence we
have only to prove that each limit point constitutes a closed form. But the
proof of the fact is parallel to that of Lemma 4.1. We omit the details. L
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5. CALCULATION OF V

We introduce two linear spaces of functions:

Gw := the linear space of functions spanned by {wEe , w
P
e }e,

LG :={Lg : g is a local function}.

Obviously these are subspaces of G. In order to state a formula for V(g)
with g ¥ Gw+LG, we introduce some notations. For any local function h
and any g ¥ G, let

Og, hP0=Og, hP0 (p, r) :=C
x
Ē[gyxh].

(Recall that p and r are omitted from the notations P̄, Ē etc.) For any
g ¥ G, let

te(g)=te(g; p, r) :=C
x
(e · x) Ē[gx g],

se(g)=se(g; p, r) :=C
x
(e · x) Ē[tx g].

From the definition of G, these are well-defined. From the definition of V
we can easily get the following proposition.

Proposition 5.1. For any 2d-dimensional vector a, any local func-
tion h and any g ¥ G, we have

V 1C
e
(aEe w

E
e+a

P
e w

P
e )+Lh, g2=−C

e
{aEe te(g)+a

P
e se(g)}−Og, hP0.

From the definitions of se, te, O ·P0, and D(0, e) we get the following
relations which will be used to prove the Theorem 2.2 in Section 6.

se(w
P
eŒ)=−de, eŒD(0, e)(t0), (25)

te(w
P
eŒ)=−de, eŒD(0, e)(g0, t0), (26)

se(w
E
eŒ)=−de, eŒD(0, e)(g0, t0), (27)

te(w
E
eŒ)=−de, eŒD(0, e)(g0), (28)

se(Lu)=D(0, e) 1t0, C
x
yxu2 , (29)
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te(Lu)=D(0, e) 1g0, C
x
yxu2 , (30)

OLu, vP0=− C
e : e > 0, |e|=1

D(0, e) 1C
x
yxu, C

x
yxv2 , (31)

se(NeŒt)=−de, eŒ p(1−p), (32)

te(NeŒt)=−de, eŒ(1−p) r, (33)

Ou, NeŒtP0=0, (34)

se(NeŒg)=−de, eŒ(1−p) r, (35)

te(NeŒg)=−de, eŒ(Ē[g
2
0]−r

2), (36)

Ou, NeŒgP0=0, (37)

where de, eŒ=1 if e=eŒ and 0 if e ] eŒ and D(0, e)(t0), e.g., denotes the value
of D(0, e)(h) for the function h(g)=t0.

Lemma 5.2. For any h ¥ G we have the variational formula;

O
lQ., ( y

|Ll|
, E
|Ll|
)Q (p, r)

[V (l)(h; y, E)]

=sup
a, u
{2V(h, ((a ·w)+Lu))+V((a ·w)+Lu)} (38)

where supremum is taken over 2d dimensional vectors a and all local
functions u.

Proof. Once Lemmas 4.1 and 4.4 are established the proof of
Lemma 5.2 is the same as that of Theorem 4.1 of ref. 8, that of Theorem 5.2
of ref. 2, or that of Lemma 8.4 of ref. 1 since the proof does not depend on
the specific form of Db. L

Let us consider the equivalence relation ’ in G which is defined by

h ’ hŒ if and only if V(h−hŒ)=0,

and the quotient set of G relative to the relation ’ . Since we always iden-
tify h and hŒ if h ’ hŒ in what follows, without running a risk of confusion
we denote the quotient set by the same letter G.

Lemma 5.3. It holds that

Gw+LG is dense in Ḡ (39)

where Ḡ is the closure of G relative to the inner product V.
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Proof of Lemmas 2.1 and 5.3. Let us define V+(h, g) and V−(h, g)
by

V+(h, g)=V+(h, g; p, r) := O
lQ., ( y

|Ll|
, E
|Ll|
)Q (p, r)

[V (l)(h, g; y, E)],

V−(h, g)=V−(h, g; p, r) := O
lQ., ( y

|Ll|
, E
|Ll|
)Q (p, r)

[V (l)(h, g; y, E)],

for all h, g ¥ G. From the trivial identity

V (l)(h, h; y, E)=V (l)(h−((a ·w)+Lu); y, E)

+2V(l)(h−((a ·w)+Lu), ((a ·w)+Lu); y, E)

+V(l)(((a ·w)+Lu); y, E),

neglecting the first line which is not negative and taking the inferior limit of
the both sides, we deduce

V−(h, h) \ 2V(h−((a ·w)+Lu), ((a ·w)+Lu))+V((a ·w)+Lu)

for all 2d dimensional vectors a and all local functions u. This combined
with (38) yields

V−(h, h) \ V+(h, h) (40)

for all h ¥ G. Lemmas 2.1 and 5.3 follows from (38) and (40). L

6. PROOF OF THEOREM 2.2

In this section we consider the Hilbert space (Ḡ, V). Let us define G (0)

by

G (0) := the linear subspace of functions spanned by {(Ng)e, (Nt)e}e.

Fix densities p and r. From (34), (37) we have, G (0) + LG. From (32), (33),
(35), (36) we see that the projection of the space Gw on G (0) has rank 2d; in
particular the dimension of Gw is 2d. Lemma 5.3 therefore shows that

G (0)+LG is dense in Ḡ.
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Hence there exists a matrix D such that

inf
g
V((a · (w+D NgF+Lg)))=0, (41)

where the infimum is taken over g= t(g1, g2,..., g2d) with gi local functions,
and (Lg)= t(Lg1, Lg2,..., Lg2d).
We give a variational formula for D. First we consider the case d=1.

From (41) it follows that there exist zE, zP ¥ LG such that

Rw
E

wP
S+Rz

E

zP
S=D RNg

Nt
S. (42)

Taking inner product with wE and wP for each element of (42), we have

RV(w
E+zE, wE) V(wE+zE, wP)

V(wP+zP, wE) V(wP+zP, wP)
S=D R −te(Neg)−se(Neg)

−te(Net)−se(Net)
S.

Note that the last matrix is −q. Since wE+zE and wP+zP are elements of
G (0), the left hand side of the last equality is equal to

RV(w
E+zE, wE+zE) V(wE+zE, wP+zP)

V(wP+zP, wE+zE) V(wP+zP, wP+zP)
S .

Denote this matrix by D̃. Since aw is in the space spanned by aNgF and LG,
which are the orthogonal complements of each other, V(a(w+z))1/2 is
equal to the distance of aw to LG. Applying Proposition 5.1, we therefore
have the following variational formula for D̃: for ta=(aE, aP),

(a · D̃a)= inf
gE, gP

D(0, e) 1aE 1g0+1C
x
yx gE22+aP 1t0+1C

x
yx gP222 ,

where the infimum is taken over all local functions.
For d \ 2, the diffusion coefficient matrix D=(Dp, ei, q, ej ) for 1 [ i, j [

d, p, q ¥ {E, P}, is determined by

R
wEe1
wPe1
x

wEed
wPed

S=D R
Ne1g

Ne1t

x

Nedg

Nedt

S−R
zEe1
zPe1
x

zEed
zPed

S ,
where zEe1 , g

P
e1 ,..., z

P
ed ¥ LG.
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Lemma 6.1. For d \ 2 if e ] eŒ then Dp, e, q, eŒ=0, for all p, q ¥
{E, P}.

Proof. We have only to show that DE, e, E, eŒ=DE, e, P, eŒ=0. Since we
have

wEe=C
e*
DE, e, E, e*Ne*g+C

e*
DE, e, P, e*Ne*t+z

E
e ,

taking inner product with NeŒg and NeŒt, we have

V(wEe , NeŒg)=C
e*
DE, e, E, e*V(Ne*g, NeŒg)+C

e*
DE, e, P, e*V(Ne*t, NeŒg),

V(wEe , NeŒt)=C
e*
DE, e, E, e*V(Ne*g, NeŒt)+C

e*
DE, e, P, e*V(Ne*t, NeŒt).

Since V(wEe , NeŒg) and V(w
E
e , NeŒt) are zero if e ] eŒ, we have only to show

that if eg ] eŒ then both V(Ne*g, NeŒg) and V(Ne*t, NeŒg) vanish. Denote by
he the reflection operator with respect to the origin along the e direction
formally

(hex)eŒ=˛
xeŒ if e ] eŒ
−xe if e=eŒ.

We may extend he to the configuration space naturally by (heg)x=ghex and
(hef)(g)=f(heg). Since our model is symmetric under he, we have
V(f, g)=V(hef, he g). From the definition of V, V is shift invariant,
namely V(f, g)=V(f, ye g) for all f, g ¥ G. Since heNeŒg is equal to NeŒg if
e ] eŒ and −yeŒNeŒg if e=eŒ, we have

V(Neg, NeŒg)=−V(yeNeg, NeŒg)=−V(Neg, NeŒg)=0,

for all e ] eŒ. In the same way we have

V(Neg, NeŒt)=−V(yeNeg, NeŒt)=−V(Neg, NeŒt)=0,

for all e ] eŒ. Hence we conclude the proof of the lemma. L

From Lemma 6.1 we get the variational formula for the diffusion
coefficient matrix for d \ 2 in the same way as in the case d=1. L

Fluctuation Dissipation Equation for Lattice Gas with Energy 245



ACKNOWLEDGMENTS

This paper is a main part of my PhD thesis written under the guidance
of Professor Kohei Uchiyama. I would like to thank him for all his useful
suggestions and help. I would also like to thank the anonymous referees for
their kind and useful suggestions.

REFERENCES

1. S. R. S. Varadhan and H. T. Yau, Diffusive limit of lattice gases with mixing condition,
Asian J. Math 1:623–678 (1997).

2. C. Kipnis, C. Landim, and S. Olla, Hydrodynamic limit for a nongradient system: The
generalized symmetric exclusion process, Comm. Pure Appl. Math. 47:1475–1545 (1994).

3. T. Funaki, K. Uchiyama, and H. T. Yau, Hydrodynamic Limit for Lattice Gas Reversible
under Bernoulli Measures, Nonlinear Stochastic PDE’s: Hydrodynamic Limit and Burgers’
Turbulence, IMA, Vol. 77, Funaki and Woyczynski, eds. (Springer, 1995), pp. 1–40.

4. S. R. S. Varadhan, Non-Linear Diffusion Limit for a System with Nearest Neighbor Interac-
tions-II, Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on
Fractals, Elworthy and Ikeda, eds. (Longman, 1993), pp. 75–128.

5. R. Esposito, R. Marra, and H. T. Yau, Diffusive limit of asymmetric simple exclusion,
Rev. Math. Phys. 6:1233–1267 (1994).

6. C. Landim, S. Olla, and H. T. Yau, First-order correction for the hydrodynamic limit
of asymmetric simple exclusion processes in dimension d \ 3, Comm. Pure Appl. Math.
50:149–203 (1997).

7. Y. Nagahata, Regularity of the diffusion coefficient matrix for the lattice gas with energy
in dimensions d \ 3. In preparation.

8. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems (Springer, 1999).
9. C. Landim, S. Sethuraman and S. Varadhan, Spectral gap for zero-range dynamics,
Ann. Probab. 24:1871–1902 (1996).

246 Nagahata


	1. INTRODUCTION
	2. MODEL AND RESULTS
	3. A SPECTRAL GAP ESTIMATE AND RELATED RESULTS
	STRUCTURE OF THE SPACE OF CLOSED FORMS
	CALCULATION OF V.
	PROOF OF THEOREM 2.2
	ACKNOWLEDGMENTS

